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ABSTRACT: Accurate subseasonal-to-seasonal (S2S) weather forecasts are crucial to making important decisions in
many sectors. However, significant gaps exist between the needs of society and what forecasters can produce, especially at
weekly and longer lead times. We hypothesize that by clustering atmospheric states into a number of predefined categories,
the noise can be reduced and, consequently, medium-range forecasts can be improved. Self-organizing map (SOM)-based
clustering was used on daily mean sea level pressure (MSLP) data from the North American Regional Reanalysis to cate-
gorize the synoptic-scale circulation for eastern North America from 1979 to 2016 into 28 discrete patterns. Then, using
two goodness-of-fit metrics, the relative skill of four different forecasting methods over a 90-day lead time was studied:
1) a circulation pattern (CP) forecast, 2) raw forecast output from the Climate Forecast System (CFS) operated by the
National Centers for Environmental Prediction (NCEP), 3) a simple climatology forecast, and 4) a simple persistence fore-
cast. As expected, forecast skill of both the CP forecast and the raw CFS forecast generally decreased rapidly from the first
day, coming to parity with the skill of climatology after 10–12 days when using correlation, and at 7–10 days when using the
root-mean-square error (RMSE). Most importantly, this study found that the CP forecast was the most skillful forecast
method over the 8–11-day lead time when using RMSE. On a spatial basis, the skill of the CP forecast and the raw CFS
decreases latitudinally from north to south. This study thus demonstrates the potential utility of categorical or circulation
pattern–based forecasting at 1–2-week lead times.

KEYWORDS: Ensembles; Forecast verification/skill; Forecasting techniques; Numerical weather prediction/forecasting;
Short-range prediction

1. Introduction

Many industries and sectors of society use guidance pro-
vided by subseasonal-to-seasonal (S2S) weather forecasts,
which cover the period between 2 weeks and several months
(He et al. 2021), to inform decisions. The ability to make in-
formed decisions regarding changes in the risk of extreme
weather events (e.g., floods, drought), resource management,
agriculture, forestry, public health, and energy, among others,
lies in effective S2S forecasts (Craig et al. 2021; Vitart et al.
2017; He et al. 2021; Hwang et al. 2019). However, significant
gaps exist between the needs of society and what forecast-
ers can produce, especially over longer lead times (White
et al. 2017; Vitart et al. 2015). Thus, collaborative efforts to
improve the quality of S2S forecasts have increased rapidly
in the past decade (Brunet et al. 2010; Robertson et al.
2015).

Evaluation of forecast model performance is crucial in im-
proving S2S weather forecasts. Atmospheric scientists have
sought to improve the accuracy of forecast models by using
verification methods that are fundamental to determining a
model’s skill (Robertson and Vitart 2018). Near-term climate

predictions are verified by performing many past predictions
called hindcasts or reforecasts (Doblas-Reyes et al. 2013). The
National Centers for Environmental Protection (NCEP) Climate
Forecast System (CFS) carried out a comprehensive reforecast
from 1982 to 2011 using initial conditions from the NCEP reanal-
ysis dataset from 1979 to 2011 (Saha et al. 2014). The aim of the
reforecasts was to obtain consistent calibrations, better bias diag-
nosis, and skill estimates of S2S forecasting with the CFS, thereby
improving forecast skill (Hamill et al. 2006).

Following the CFS, many studies have used reforecasts to
evaluate and recalibrate forecast models of various climate
and environmental variables. For example, reforecasts have
been used to verify the skill with which reanalysis products re-
produce soil moisture conditions and accurately model land–
atmosphere interactions (Dirmeyer 2013; Prodhomme et al.
2016). The predictive skill of summer monsoon precipitation
(Zuo et al. 2013), the sensitivities of surface air temperature
predictions to the uncertainty in initial conditions of the land
surface (Shin et al. 2020), and the prediction of wintertime
Arctic Oscillation (Riddle et al. 2013), among others, have all
utilized reforecast datasets. One of the most common meth-
ods of inferring forecast skill is by comparing its mean error
or correlation to that of a persistence forecast or a climatology
forecast (Li and Robertson 2015; Walsh 1984), the latter of
which generally becomes most skillful at around 10–17 days
of lead time (Vitart 2014).

There are several reasons why S2S forecasts have proven
unskillful after 1–2 weeks despite advances in numerical
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weather prediction (Wedam et al. 2009; Huang et al. 2020).
Primary among them are the compounding effects of small
imprecisions in the initial conditions [i.e., the so-called butter-
fly effect (Lorenz 1963)], which can lead to significant errors
in the forecast model, due to the chaotic nature of the atmo-
sphere. This problem is best mitigated through ensemble fore-
casting (Robertson and Vitart 2019; Wilks 2020), whereby a
finite ensemble of initial states is first chosen (rather than the
single observed initial state) based on the sampling of uncer-
tainties related to observational errors, and then each mem-
ber of the ensemble is integrated forward in time according to
the governing equations of the forecast model (Vannitsem
et al. 2018). The spread of the ensemble member forecasts at
the final forecast lead time provides the range of possible fu-
ture states of the atmosphere and the uncertainty in the en-
semble forecast. The probability of occurrence of individual
ensemble forecasts can thus be evaluated, and the ensemble
mean of these forecasts reflects the actual level of forecast
skill (Wilks and Vannitsem 2018; Robertson and Vitart 2019).

In addition to sensitive dependence on initial conditions, the
accuracy of S2S forecasts is influenced by the spatiotemporal
collinearity in gridded fields of weather variables assimilated
into forecast models, including the CFS (Sheridan and Lee 2011;
Dormann et al. 2013). Data collinearity can lead to less-skilled
forecasts (Sousa et al. 2007; Dormann et al. 2013) because the
high level of unpredictable noise makes atmospheric models too
nebulous to capture the underlying atmospheric condition, thus
making it difficult to forecast. Finally, our inability to fully rep-
resent the equations that govern weather (Ferranti et al. 2015)
and compounding errors introduced by the necessity of parame-
terizing nontrivial sub-gridscale processes (Shutts and Pallarès
2014) also contributes to larger errors in S2S forecast models. A
working hypothesis of the present study is that by classifying at-
mospheric states into discrete categories so that all categories
represent the whole spectrum of atmospheric variability, the
noise can be reduced, and the predictable signals amplified.
While classifying and identifying typically occurring atmo-
spheric circulation patterns (CPs) have been done exten-
sively in prior synoptic climatological research, few studies
have focused on the potential skillfulness of forecasting pre-
defined CPs and comparing such a forecast’s performance
to that of raw output from a numerical forecast model.

Synoptic CPs or weather patterns have proven useful in un-
derstanding the linkages of local surface weather characteristics
and environmental outcomes to specific sets of atmospheric
states}a fundamental aim of synoptic climatology (Yarnal
1993; Yarnal et al. 2001; Sheridan and Lee 2011; Gilabert and
Llasat 2018). For example, synoptic CPs have been shown to
significantly associate with weather and surface characteristics
such as tornadoes, hurricanes, and forest fires (Tochimoto 2022;
Lee 2012; Bagaglini et al. 2021); pollution and air quality (Sheri-
dan et al. 2013; Zhou et al. 2018); and coastal flooding and sea
level fluctuations (Sheridan et al. 2017, 2019; Pirhalla et al. 2022;
Neal et al. 2018). Synoptic CPs have also been useful in under-
standing extreme temperature, precipitation, and dewpoint
events (Adams et al. 2021; Richardson et al. 2020a; Neal et al.
2020; Mastrantonas et al. 2021; Lee et al. 2021), and especially
their links to or influence on human health outcomes such as

mortality and morbidity (Huang et al. 2020; Garcı́a-Herrera
et al. 2022). Thus, in addition to potentially improving weather
forecasts at weekly and longer lead times, since these numerous
other human and environmental outcomes are influenced by
CPs, forecasting predefined CPs may also lead to more skillful
predictions of these outcomes.

Some recent studies have demonstrated the utility of fore-
casting predefined CPs or weather patterns. For example, the
Met Office’s 30 weather patterns, defined from the k-means
clustering of daily mean sea level pressure (MSLP), have
been applied to forecasting associated climate variables
and environmental outcomes like flooding (Neal et al. 2018;
Richardson et al. 2020a), precipitation and drought (Richardson
et al. 2020b), volcanic ash flow (Harrison et al. 2022), and light-
ning activity (Wilkinson and Neal 2021), among others. In all
these studies, ensemble members are assigned to the closest
matching weather pattern for each day in the forecast and grid
point (Neal et al. 2016; Richardson et al. 2020a). This ensemble
prediction approach ensures that a probabilistic forecast output
can be produced.

In this study, the ability of a single numerical model (the
CFS) to forecast the correct predefined categorical circulation
pattern, as compared to the observed continuous gridded field,
was examined using two goodness-of-fit metrics. As mentioned
above, fewer categorical abstractions of the weather have a
higher signal to noise ratio than raw or continuous observations,
so we hypothesize that forecast skill may be extended over the
current limit by a few more days using the CP-based method.
Since the aim here is a proof of concept to determine the rela-
tive skill of a self-organizing map (SOM)-based CP forecasting
method, we chose to use a single observed initial state (as op-
posed to an ensemble) for a single variable (MSLP) over a sin-
gle region to simplify the analysis. The performance of the CP
forecast against the raw CFS forecasts, simple climatology fore-
casts, and simple persistence forecasts over a 90-day period was
evaluated.

2. Data and methods

a. Study area and data

Daily-scale MSLP from the North American Regional Re-
analysis (NARR; Mesinger et al. 2006) was used to categorize
the synoptic-scale circulation for eastern North America from
January 1979 through December 2016. Because categorizing
synoptic-scale patterns across too large a region may nega-
tively impact classifications (Sheridan et al. 2019), the study
area is subcontinental (Fig. 1). In addition, daily MSLP from
the Climate Forecast System (CFS) Reanalysis (CFSR), and
from CFS, version 2 (CFSv2), 9-month operational forecasts
from April 2011 through December 2016 (Saha et al. 2014)
were also acquired. Since the spatial resolution of the CFS
(0.58 3 0.58) is different than that of the NARR (;0.38 3 0.38),
all CFS data were spatially interpolated to the NARR grid by
using a Delaunay triangulation, which tends to be more effi-
cient and less prone to artifacts than other interpolation meth-
ods (Smith et al. 2021; Sheridan et al. 2019; Amidror 2002).
As this study’s interest is primarily subseasonal, only the first
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90 days of the 9-month CFS operational forecast data were
used. All CFSv2 data were bias corrected by subtracting the
mean 1981–2010 difference between CFSR and NARR data
from each grid point for every day in the CFSv2 dataset.

b. SOM methodology

Compared to more traditional clustering or classification
strategies, the use of SOMs in synoptic climatological research
has become widespread over the past decade or longer (e.g.,
Jaye et al. 2019; Berkovic et al. 2021; Smith et al. 2021).
A SOM is an unsupervised, neural network clustering meth-
odology that projects high-dimensional input data onto a two-
dimensional space in order to unearth patterns (Hewitson and
Crane 2002; Kohonen 1990). One unique aspect of the SOM
methodology is that, unlike other clustering algorithms (e.g.,

EOFs, k-means, etc.) that have discrete patterns, SOMs can
organize atmospheric circulation into a continuum of synoptic
classes by locating nodes that span the entire climatic data
space. This process creates intuitive pattern visualizations of
atmospheric states and of the relationship between the nodes
(Hewitson and Crane 2002; Solidoro et al. 2007; Liu and
Weisberg 2011; Sheridan and Lee 2011; Sheridan et al. 2017).

In this study, SOMs were used to classify daily MSLP CPs
for the study area from 1979 to 2016, using NARR data. A
SOM consists of an array of nodes that spans the two primary
dimensions of the data space. The total number of nodes, or
patterns, is determined by the number of patterns in the hori-
zontal and vertical dimensions. Figure 2 shows the MSLP no-
des arrayed in a continuum with high pressure dominant
patterns or nodes, mostly over land, aligned on one side,
while low pressure dominant patterns, especially over the
North Atlantic, are aligned on the other. The transitional
nodes, where moderately high and low pressure patterns
alternate between land and ocean, lie within the SOMs
space.

Each day in the dataset was assigned to one of 28 SOM no-
des based on the similarity of the MSLP pattern on that day
with all other days. The final number of nodes was deter-
mined by examining multiple different SOM sizes or dimen-
sions to identify the SOM that best partitioned atmospheric
variability in the region’s domain. The optimal SOM dimen-
sions were determined using cluster-validation metrics like
the Davies–Bouldin index (Davies and Bouldin 1979) and the
distributed variability skill score (Lee 2017) that quantified
the within-node and across-node variability, with the goal of
minimizing the within-node variability while maximizing the
variability across nodes (Yarnal 1993; Hewitson and Crane

FIG. 1. The eastern North American region used in the SOM-based
atmospheric pattern classifications.

FIG. 2. SOM of MSLP for the eastern North American region (NARR: 1979–2016) plotted as filled contours (hPa). Modified from
Sheridan et al. (2019).
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2002). Before the SOM-based clustering, the raw MSLP data
were standardized and subjected to an S-mode principal
component analysis (PCA). PCA reduces the computa-
tional time (via dimension reduction) and helps mitigate
spatial collinearity before clustering (Smith et al. 2021). All
principal components (PCs) with eigenvalues greater than
one were retained and used as inputs into the SOM neural
network training.

Once historical or observed (NARR) CPs are defined,
then, to determine the ability of the CFS to forecast SOM-
based patterns, the squared Euclidean distance between the
raw CFS output (for each lead time and initialization date)
and the 28 CPs’ averaged MSLP field was calculated. The CP
or node with the smallest distance was selected as the best
matching pattern (BMP), and then the actual CP forecast was
simply the mean NARR MSLP field for that pattern (aver-
aged over the 1981–2010 period). For example, if there were
100 days classified into pattern 3, then the MSLP at every grid
point on those 100 days is averaged to get the mean NARR
MSLP field for that pattern. Then, for any day from the
CFSv2 model output with a BMP of pattern 3, the mean
MSLP field is used as the actual forecast (instead of the
CFSv2 model output of the MSLP field). If two (or more) pat-
terns had distances smaller than a standard radial distance
(SRD) of 40.29 (or one standard deviation unit of distance be-
tween all cluster nodes) from the BMP, then the forecast was
a combined mean MSLP field of all the CPs falling within this
distance. The idea is, if a forecasted MSLP field is well defined
by a single pattern, then only that pattern will be in the fore-
cast, but if the forecasted MSLP field resembles two or more
different patterns (i.e., it is “borderline”), then the forecast
will reflect that. This process is repeated for each lead time
(1–90 days) and each initialization day (n 5 2101) from April
2011 to December 2016.

c. Forecast model comparison and evaluation

Using root-mean-square error (RMSE) and Pearson’s cor-
relation (r) metrics, the skill of the 90-day CFS CP forecast
model to reproduce NARR data was calculated for all 90
forecast lead days throughout the study period (2101 days,
from April 2011 to December 2016). This 90-day CFS CP
forecast skill was also compared to that of three other models:
the skill of the bias-corrected CFS forecast MSLP model out-
put (hereafter referred to as raw CFS), the seasonal MSLP cli-
matology, and simple persistence. The seasonal climatology
was calculated from the MSLP NARR data from 1981 to 2010.
Persistence, though not used as often as climatology, is a good
reference to measure shorter-term forecast skill (Lipperheide
et al. 2015; Jacox et al. 2019, and others). Persistence was calcu-
lated from the NARR data and is the MSLP NARR value on
the day of forecast initialization held constant throughout the 90
forecast days.

To calculate time-based (temporal) forecast skill, the evalu-
ation metrics were calculated over time (n 5 2101 days for
each correlation or RMSE calculation) for each grid point.
Then, to get a lead time–based result for the whole domain,
these metrics were averaged across all 10 590 locations (grid

points), producing a 90-day CFS forecast skill assessment. Op-
positely, for space-based (pattern) forecast skill, the evaluation
metrics (r and RMSE) are calculated over space (n5 10590 loca-
tions) for each initialization date. Then, to get a lead time–based
result (for the entire period), these metrics are averaged across
the 2101 initialization days. Finally, forecast skill is evaluated using
anomaly correlation (i.e., the anomaly of either the CP forecast or
the raw CFS model values from the NARR data) on a temporal
basis.

Across the study area, the spatial distribution of the skill of
the CFS CP forecast using the RMSE and r was calculated by
averaging CFS CP forecast in each of the 10 590 locations for
certain lead windows. Furthermore, the difference in the skill
of the CFS CP forecast and the raw forecast, on one hand,
and the CFS CP forecast and climatology, on the other hand,
were calculated. These results were mapped to identify spatial
variation in skill differential.

3. Results and discussion

a. Forecast skill as determined from Pearson’s correlation
coefficient

The forecast skill of the varying methods is shown in Fig. 3
(Pearson’s correlation) and Fig. 4 (RMSE). Although 90 days of
forecast skill were evaluated, the figures focus on the 0–20-day
lead window since, after this period, the skill of all the forecast
models is effectively constant. For correlation, the ability of all
forecasts, including the CP forecasts, to replicate NARR observa-
tions expectedly decreases sharply from the first forecast day,
where r is strongly positive (r 5 0.7–0.9), until coming to parity
with the skill of climatology (at about 9–13 days) before a gradual
decline below the skill of the climatology forecast by the end of
the forecast period. The high forecast skill for the CP forecast in
the first 10 days and the drastic decrease in skill after is consistent
with many current studies of S2S weather forecasting using more
traditional techniques (e.g., Weyn et al. 2021; Li and Robertson
2015; Toth and Buizza 2019). It is also in keeping with NOAA’s
current outlook for most weather variables (Pegion et al. 2019).
Forecast skill has continued to improve, with skill improving by
one day per year over the last two decades (Johnson et al. 2014;
Pegion et al. 2019).

While the raw CFS model output is more skillful than the
CP forecast in the first 8–10 days, the CP forecast is better
than raw model output after ;10 days of lead time, especially
when examining pattern correlations (Fig. 3b). Nonetheless,
the raw and CP forecasts are less skillful than climatology at
longer lead times. The persistence forecast is generally the
worst-performing forecast after a lead time of 1 day (lead-1),
though when examining anomaly correlations (Fig. 3c), de-
clining performance of raw CFS and CP-based forecasts come
to parity with persistence after about 2 weeks of lead time.

b. Forecast skill as determined from RMSE

When evaluating RMSE (Fig. 4), many similarities with the
correlation results are evident. The most significant differ-
ences, however, are noted around 9–11 lead days, when the
CP-based forecast is nearly identical to or better than all of
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the other forecast types. Most notable is the rapid divergence
of the CP-based forecast from that of the raw CFS forecast
after about 7 days and continuing through the entire 20-day lead
time (as well as the entire 90-day lead time); the CP-based fore-
cast bests the raw CFS output consistently by about 1.5–2 hPa
after week 2 and remains close to parity with the climatology
forecast afterward. These results are consistent whether evaluat-
ing pattern or spatial RMSE or temporal RMSE.

On a spatial basis, at these lead times (8–11 days), forecasts
generally improve inversely with latitude; that is, lower latitudes
have better skill when evaluating by either correlation or
RMSE (Figs. 5 and 6). That said, these spatial results help
elucidate where the different forecasts’ strengths lie. The
CP-based forecast appears to perform best (relative to

FIG. 3. Averaged Pearson’s correlation (y axis) by lead day
(x axis) for (a) temporal, (b) spatial/pattern, and (c) anomaly as-
sessments of forecast skill for the different forecast models. The
dotted lines show the 5th–95th confidence intervals.

FIG. 4. Averaged RMSE (y axis; hPa) by lead day (x axis) for
(a) temporal and (b) spatial/pattern assessments of forecast skill
for the different forecast models. The dotted lines show the
5th–95th confidence intervals.
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climatology and raw CFS) out in the open Atlantic Ocean,
where RMSEs are close to 1 hPa better than raw CFS and
0.3 hPa better than climatology (Fig. 5). With regard to cor-
relations, again, the CP forecast appears to be more skillful
largely over the open Atlantic, especially versus climatol-
ogy, where it is up to 0.4 points better, with negligible dif-
ferences from raw CFS at these lead times (Fig. 6). Another
area of strength for the CP forecast is the Great Lakes re-
gion, where climatology forecasts struggle, especially when
examining correlations.

Furthermore, confidence intervals were produced for all
models, based on 1000 bootstrap resamples of the RMSE
and correlation coefficient values. In general, the forecast
estimates for all four models in the two evaluation methods
appear to be statistically significant.

Together, the results from this study suggest that CP-based
predictions not only show forecast skill but, for certain lead

times, especially at the edge of current numerical model capa-
bility, this CP forecast may, indeed, be slightly better than
raw model output, persistence, and climatology forecasts. In a
practical sense, at least for MSLP along the East Coast of the
United States, a CP-based forecast fits a useful window be-
tween where numerical model skill drops off and before the
climatological signal is most useful. This window of added
skill from using a CP forecast over other models is shown in
Fig. 7, for temporal correlations (Fig. 7a) and temporal
RMSE (Fig. 7b).

In Fig. 8, we further examined the four forecast models
based on how their underlying MSLP circulation patterns
evolve over different lead days (0, 3, 6, 9, 12, and 15), relative
to the observed NARRMSLP. We randomly selected 15 May
2011 as a case study out of the 2101 days. The similarity be-
tween the NARR MSLP pattern and the CP and raw CFS
forecast pattern depict the expectedly high forecast skill in the

FIG. 5. (a) Averaged temporal RMSE (hPa) by location for (left) CP, (center) raw CFS, and (right) climatology forecasting methods at
the 8–11-day lead time. (b) The difference in averaged temporal RMSE between (left) CP and raw CFS and between (right) CP and cli-
matology. Lower scores (blue colors) indicate that the CP RMSE is better (i.e., lower).
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first forecast lead day. As forecast skill decreases over the
next 2 weeks, the forementioned similarity expectedly disap-
pears. In this case study, while raw CFS becomes unskillful,
the CP forecast acquires the skill of climatology, which can be
seen in the similarity between the climatology forecast pattern
and the CP forecast pattern.

In addition to juxtaposing the observed and forecast models,
forecast anomalies were estimated by subtracting the observed
MSLP fields from each of the four forecast model MSLP values
at the reference lead days (Fig. 9). Anomalies generally in-
crease with forecast lead days. More importantly, across all
forecast models and lead days, positive anomalies dominate, es-
pecially over the U.S. coastal eastern seaboard and the Atlantic
Ocean, suggesting that the lack of forecast skill in the MSLP
S2S forecast may be due to overestimation. Positive North
Atlantic MSLP forecast errors have been reported by Kolstad
et al. (2020).

A medium-range forecast [defined by White et al. (2017) as
a 3–10-day lead window] is critical to applied research since

day-to-day weather fluctuations impact almost every aspect of
human life, as well as plant and animal ecosystems. Thus, im-
proved forecast skill in the 8–11-day lead window has numerous
sectoral applications. In the humanitarian sector, accurately
forecasting extreme weather events like coastal flooding, heat
waves, and hurricanes 1–2 weeks in advance can activate disas-
ter preparedness actions that are time dependent. These actions
may include prepurchase and preallocation of aid, evacuation,
and other mitigation plans (White et al. 2017). Heat waves and
cold spells, for example, are two of the most impactful extreme
events, so more accurate early-warning systems a few days fur-
ther in advance can potentially save lives. The energy sector
is another that would benefit from improved medium-range
weather forecasts; improved medium-range forecasts would
help power suppliers prepare for anomalous cold and hot days
(heating and air-conditioning demand) that could help alleviate
energy price spikes and prevent damage to infrastructure (Soret
et al. 2019). Moreover, as a larger percentage of the energy re-
source mix is composed of wind and solar, improved operational

FIG. 6. As in Fig. 5, but for Pearson’s correlations. In (b), higher scores (red colors) indicate that the CP correlation is better (i.e., higher).
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forecasting techniques will become critical (Bloomfield et al.
2021; Pinson 2013; Lynch et al. 2014). Improved forecasts be-
yond 1 week in advance can help operators plan for periods
when wind and solar resources may fail to meet demand (Füss
et al. 2015). Other areas where improved medium-range fore-
casts are potentially useful include instances of inland and
coastal flooding, which pertains to the insurance and agricultural
industries.

Perhaps as importantly, the application of categorical atmo-
spheric patterns has a long history. That is, CPs have been uti-
lized to relate atmospheric variability with myriad outcomes,
ranging from sea level variability to human health outcomes,
air quality, and tornadoes, among others. Thus, even in the
absence of superior skill (compared to the skill of climatology

or raw model output) in modeling the atmosphere itself, a
skillful CP-based forecast of categorical patterns may still
very well be useful to decision-makers in these climate-
related sectors, especially at these lead times.

Forecasting categorical variables, where only a finite set of
outcomes can occur, is not completely novel, since some
weather variables like precipitation type are routinely pre-
dicted in this manner. Forecasting predefined SOM-based
categorical weather variables and atmospheric circulation
patterns that are clustered and created from point-based, con-
tinuous weather observations, like this study has done is, how-
ever, new. The sparse focus on this approach is surprising
given that most continuous data-based weather forecasts are
routinely presented using categorical terms in order to pro-
vide as intuitive an understanding as possible of the weather
for the need of society (National Weather Service 2022).
These may, for example, be the occurrence of precipitation
types, cloud cover categories (e.g., mostly sunny or mostly
cloudy), or binary/trinary below-normal (near normal) and
above-normal temperature, humidity, or precipitation over a
given window. Besides individual weather variables, other cli-
mate system dynamics like El Niño–Southern Oscillation
(ENSO), with continuous indices of sea surface temperatures
(SSTs) (e.g., the Niño series) and sea level pressure [e.g., the
Southern Oscillation index (SOI)] are used to discretize El
Niño and La Niña years into, for example, weak, strong, very
strong, and neutral categories based on standard deviation
thresholds (Hanley et al. 2003; Barnston 2015). Phases of
most other teleconnections are similarly broken down into
categories.

Forecasting categorical variables is important because it
allows for the creation of thresholds that focus on the main
aspect of weather that is important for the end user (Neal
et al. 2016; Roman 2017). This study sought to infuse objec-
tive thresholds into the forecasting process itself rather
than as a means of summarizing the forecast results. In our
case, the thresholds are homogenous, predefined, categori-
cal atmospheric CPs that represent the whole continuum of
atmospheric variability. More importantly, the smaller set
of discrete categories forecasted are meaningful because
they have been objectively predefined and can, therefore,
be a priori related to specific local-scale applications or out-
comes (e.g., extreme heat or flooding); relative to the noisi-
ness of continuous weather forecasts at these lead times,
this aspect of CPs makes them more readily usable. The
value-added skill of the CFS CP forecast over the raw CFS
forecast from roughly the eighth to the eleventh forecast
day agrees with our working hypothesis that the predict-
ability of S2S forecasts can increase by using CPs. It is also
noteworthy that, although less than the skill of climatology,
the CP forecasting outperforms the CFS model output in
most of the 90-day forecast lead times.

As discussed earlier, ensemble forecasting produces many
likely future scenarios, for example, when ensemble members
are matched with their closest weather-pattern pair (Neal
et al. 2016). While the research herein uses only a single
numerical model to forecast predefined CPs (rather than a
probabilistic, ensemble-based approach), we argue that our

FIG. 7. Example illustration of the skill of the 20-day CFS SOM
forecast over the raw CFS forecasts for (a) temporal correlations
and (b) temporal RMSE. The turquoise-shaded region is the value-
added skill of the SOM-based forecast over just using the output of
the raw CFS forecast.
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SOM-based method is inherently probabilistic in that, even
from a single model realization, it can produce a range of
possible outcomes (equal to the range of the hundreds of
different patterns that are contained within the pattern
that is forecasted) at a much lower computational cost than

traditional ensembles. Moreover, it is important to note
that if we used an ensemble, then the SOM-based forecast
stemming from that ensemble will likely be that much bet-
ter as well. That is, the SOM-based method should be
at least as good as the underlying data from which it is

FIG. 8. Underlying MSLP pattern of the four forecast models on various lead days (raw CFS in the second column, CFS CP in the third
column, and persistence in the fourth column) relative to the observed (NARR) MSLP pattern on 15 May 2011 (shown at top left), plot-
ted as filled contours (hPa).
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produced. In effect, it does not matter what forecast model(s)
is used as long as we compare the SOM-based forecasting
method from model X to the raw forecast output from
model X.

4. Summary and conclusions

Weather forecasts have been shown to be largely unskillful
from week 2 onward, even with improving model ability to re-
solve the atmosphere and produce best estimates. This

FIG. 9. Anomalies of MSLP forecasts models on 15 May 2011 for various lead days relative to observed (NARR) MSLP, plotted as filled
contours (hPa) for raw CFS in the second column, CFS CP in the third column, and persistence in the fourth column.
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problem is, in part, due to data initialization and parameteri-
zation schemes, high dimensionality, and low signal-to-noise
ratio in climatic datasets. Numerical weather models may be
our best guide to atmospheric evolution, but they are also in-
creasingly noisy with time and hence limit forecast usefulness.
We hypothesized that predicting a smaller set of clustered at-
mospheric states or CPs that are categorical (rather than contin-
uous fields) may improve forecast skill. Using MSLP along the
East Coast of the United States as a proof of concept, we dem-
onstrate that using SOM-based CPs generated from CFS fore-
cast output improves forecast skill at certain lead times and
locations, especially from about 8 to 11 days. Specifically, the re-
sults showed the following:

1) Forecast skill generally decreased rapidly from lead-1 to
the skill of climatology after 9–11 days when using corre-
lation, and 8–11 days when using RMSE for CP forecasts
and raw CFS forecasts, respectively. Thereafter, a gradual
decrease in skill follows until about 3 weeks of lead time,
with skill remaining roughly constant throughout the rest
of the 90-day lead time.

2) For RMSE and spatial or pattern correlation, the skill of
the CP forecasts eclipsed the skill of raw CFS output at a
lead time of 8 days and stayed superior thereafter.

3) Of the four forecast methods compared herein, the CP-
based forecasting was generally the most skillful from 8 to
11 days lead time when using RMSE. Prior to 8 days, the
raw CFS is better, and after 11 days, the climatology is
better. This lead-time window of value-added skill of the
CP forecast supports our hypothesis regarding the utility
of forecasting categorical predefined CPs rather than con-
tinuous fields.

4) When the skill of these forecasting methods is mapped,
there is a general inverse latitudinal relationship, with the
CP forecasts largely outperforming other forecasting meth-
ods over the open Atlantic Ocean and the Great Lakes.

5) The difference in the performance of the CFS CP forecast
and the raw CFS forecast (in forecasting NARR MSLP
data) is more vivid in the RMSE metric than in Pearson’s r.
Anomaly correlation of CFS output is slightly, but consis-
tently, better than that of CP forecasting until week 3.

This research is part of a larger project exploring forecast-
ability of daily-scale anomalous sea level variability around
the entire United States, and MSLP in this 308 3 308 latitudi-
nal and longitudinal domain near the eastern coast of the
United States plays an important role in this application (see
Sheridan et al. 2019). As NWP models keep improving in
each successive generation, it is expected that such improved
skill in raw model output would, in turn, improve the CP-
based forecasts as well, leading to the CP-based forecasting
method becoming a multiday extension of forecast skill at what-
ever the contemporary skillful limit of NWP models becomes.
However, forecast skill is expected to vary depending on the
variable of interest and the region (e.g., see Figs. 5 and 6). Addi-
tionally, seasonality is a factor in S2S weather predictability
since atmospheric variables show notable seasonal variations.
Herein, producing long-term (and year-round) averages of

forecast skill may hide important seasonal differences, likely
leading to some seasons being poorer than the annual averages
reported here, but others being better.

Accordingly, research exploring atmospheric patterns of
other meteorological variables in other domains (e.g., in the
warmer Gulf of Mexico region and western North America)
is currently underway. Our preliminary analysis already shows
some differences in the predictability of these other weather
variables, along with regional differences in forecast skill
when using the SOM-based CPs. For example, wind speeds
had the lowest forecast skill in all regions compared to MSLP
and 700-hPa geopotential heights. Also, winter and summer
forecasts were generally the most skillful and least skillful, re-
spectively. In addition to our group’s current research on CP
forecasting, studies in other parts of the world (e.g., Richardson
et al. 2020a; Harrison et al. 2022) may be able to provide deeper
insight into the seasonal and regional differences in the predict-
ability of predefined categorical CPs. It may also be beneficial
to compare the performance of forecasted CPs created from dif-
ferent clustering techniques (e.g., EOFs, k-means, and others)
and/or using different bias correction methodologies.
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